53 research outputs found

    Unusual suppression of the superconducting energy gap and critical temperature in atomically thin NbSe2

    Full text link
    It is well known that superconductivity in thin films is generally suppressed with decreasing thickness. This suppression is normally governed by either disorder-induced localization of Cooper pairs, weakening of Coulomb screening, or generation and unbinding of vortex-antivortex pairs as described by the Berezinskii-Kosterlitz-Thouless (BKT) theory. Defying general expectations, few-layer NbSe2 - an archetypal example of ultrathin superconductors - has been found to remain superconducting down to monolayer thickness. Here we report measurements of both the superconducting energy gap and critical temperature in high-quality monocrystals of few-layer NbSe2, using planar-junction tunneling spectroscopy and lateral transport. We observe a fully developed gap that rapidly reduces for devices with the number of layers N < 5, as does their ctitical temperature. We show that the observed reduction cannot be explained by disorder, and the BKT mechanism is also excluded by measuring its transition temperature that for all N remains very close to Tc. We attribute the observed behavior to changes in the electronic band structure predicted for mono- and bi- layer NbSe2 combined with inevitable suppression of the Cooper pair density at the superconductor-vacuum interface. Our experimental results for N > 2 are in good agreement with the dependences of the gap and Tc expected in the latter case while the effect of band-structure reconstruction is evidenced by a stronger suppression of the gap and the disappearance of its anisotropy for N = 2. The spatial scale involved in the surface suppression of the density of states is only a few angstroms but cannot be ignored for atomically thin superconductors.Comment: 21 pages, including supporting informatio

    Electrostatically confined monolayer graphene quantum dots with orbital and valley splittings

    Full text link
    The electrostatic confinement of massless charge carriers is hampered by Klein tunneling. Circumventing this problem in graphene mainly relies on carving out nanostructures or applying electric displacement fields to open a band gap in bilayer graphene. So far, these approaches suffer from edge disorder or insufficiently controlled localization of electrons. Here we realize an alternative strategy in monolayer graphene, by combining a homogeneous magnetic field and electrostatic confinement. Using the tip of a scanning tunneling microscope, we induce a confining potential in the Landau gaps of bulk graphene without the need for physical edges. Gating the localized states towards the Fermi energy leads to regular charging sequences with more than 40 Coulomb peaks exhibiting typical addition energies of 7-20 meV. Orbital splittings of 4-10 meV and a valley splitting of about 3 meV for the first orbital state can be deduced. These experimental observations are quantitatively reproduced by tight binding calculations, which include the interactions of the graphene with the aligned hexagonal boron nitride substrate. The demonstrated confinement approach appears suitable to create quantum dots with well-defined wave function properties beyond the reach of traditional techniques

    Vertical Field Effect Transistor based on Graphene-WS2 Heterostructures for flexible and transparent electronics

    Full text link
    The celebrated electronic properties of graphene have opened way for materials just one-atom-thick to be used in the post-silicon electronic era. An important milestone was the creation of heterostructures based on graphene and other two-dimensional (2D) crystals, which can be assembled in 3D stacks with atomic layer precision. These layered structures have already led to a range of fascinating physical phenomena, and also have been used in demonstrating a prototype field effect tunnelling transistor - a candidate for post-CMOS technology. The range of possible materials which could be incorporated into such stacks is very large. Indeed, there are many other materials where layers are linked by weak van der Waals forces, which can be exfoliated and combined together to create novel highly-tailored heterostructures. Here we describe a new generation of field effect vertical tunnelling transistors where 2D tungsten disulphide serves as an atomically thin barrier between two layers of either mechanically exfoliated or CVD-grown graphene. Our devices have unprecedented current modulation exceeding one million at room temperature and can also operate on transparent and flexible substrates

    In Situ TEM Imaging of Solution‐Phase Chemical Reactions Using 2D‐Heterostructure Mixing Cells

    Get PDF
    From Wiley via Jisc Publications RouterHistory: received 2021-01-26, rev-recd 2021-03-31, pub-electronic 2021-06-09Article version: VoRPublication status: PublishedFunder: Engineering and Physical Sciences Research Council (UK) EPSRC; Grant(s): EP/M010619/1, EP/S021531/1, EP/P009050/1Funder: European Commission H2020 ERC Starter grant EvoluTEM; Grant(s): 715502Funder: Henry Royce Institute for Advanced MaterialsFunder: EPSRC; Id: http://dx.doi.org/10.13039/501100000266; Grant(s): EP/R00661X/1, EP/S019367/1, EP/P025021/1, EP/P025498/1Funder: Royal Society FellowshipAbstract: Liquid‐phase transmission electron microscopy is used to study a wide range of chemical processes, where its unique combination of spatial and temporal resolution provides countless insights into nanoscale reaction dynamics. However, achieving sub‐nanometer resolution has proved difficult due to limitations in the current liquid cell designs. Here, a novel experimental platform for in situ mixing using a specially developed 2D heterostructure‐based liquid cell is presented. The technique facilitates in situ atomic resolution imaging and elemental analysis, with mixing achieved within the immediate viewing area via controllable nanofracture of an atomically thin separation membrane. This novel technique is used to investigate the time evolution of calcium carbonate synthesis, from the earliest stages of nanodroplet precursors to crystalline calcite in a single experiment. The observations provide the first direct visual confirmation of the recently developed liquid‐liquid phase separation theory, while the technological advancements open an avenue for many other studies of early stage solution‐phase reactions of great interest for both the exploration of fundamental science and developing applications

    Thermopower in hBN/graphene/hBN superlattices

    Full text link
    Thermoelectric effects are highly sensitive to the asymmetry in the density of states around the Fermi energy and can be exploited as probes of the electronic structure. We experimentally study thermopower in high-quality monolayer graphene, within heterostructures consisting of complete hBN encapsulation and 1D edge contacts, where the graphene and hBN lattices are aligned. When graphene is aligned to one of the hBN layers, we demonstrate the presence of additional sign reversals in the thermopower as a function of carrier density, directly evidencing the presence of the moir\'e superlattice. We show that the temperature dependence of the thermopower enables the assessment of the role of built-in strain variation and van Hove singularities and hints at the presence of Umklapp electron-electron scattering processes. As the thermopower peaks around the neutrality point, this allows to probe the energy spectrum degeneracy. Further, when graphene is double-aligned with the top and bottom hBN crystals, the thermopower exhibits features evidencing multiple cloned Dirac points caused by the differential super-moir\'e lattice. For both cases we evaluate how well the thermopower agrees with Mott's equation. Finally, we show the same superlattice device can exhibit a temperature-driven thermopower reversal from positive to negative and vice versa, by controlling the carrier density. The study of thermopower provides an alternative approach to study the electronic structure of 2D superlattices, whilst offering opportunities to engineer the thermoelectric response on these heterostructures.Comment: 9 pages, 3 figure

    Atomically thin boron nitride: a tunnelling barrier for graphene devices

    Get PDF
    We investigate the electronic properties of heterostructures based on ultrathin hexagonal boron nitride (h-BN) crystalline layers sandwiched between two layers of graphene as well as other conducting materials (graphite, gold). The tunnel conductance depends exponentially on the number of h-BN atomic layers, down to a monolayer thickness. Exponential behaviour of I-V characteristics for graphene/BN/graphene and graphite/BN/graphite devices is determined mainly by the changes in the density of states with bias voltage in the electrodes. Conductive atomic force microscopy scans across h-BN terraces of different thickness reveal a high level of uniformity in the tunnel current. Our results demonstrate that atomically thin h-BN acts as a defect-free dielectric with a high breakdown field; it offers great potential for applications in tunnel devices and in field-effect transistors with a high carrier density in the conducting channel.Comment: 7 pages, 5 figure

    Tuning the pseudospin polarization of graphene by a pseudo-magnetic field

    Get PDF
    One of the intriguing characteristics of honeycomb lattices is the appearance of a pseudo-magnetic field as a result of mechanical deformation. In the case of graphene, the Landau quantization resulting from this pseudo-magnetic field has been measured using scanning tunneling microscopy. Here we show that a signature of the pseudo-magnetic field is a local sublattice symmetry breaking observable as a redistribution of the local density of states. This can be interpreted as a polarization of graphene's pseudospin due to a strain induced pseudo-magnetic field, in analogy to the alignment of a real spin in a magnetic field. We reveal this sublattice symmetry breaking by tunably straining graphene using the tip of a scanning tunneling microscope. The tip locally lifts the graphene membrane from a SiO2_2 support, as visible by an increased slope of the I(z)I(z) curves. The amount of lifting is consistent with molecular dynamics calculations, which reveal a deformed graphene area under the tip in the shape of a Gaussian. The pseudo-magnetic field induced by the deformation becomes visible as a sublattice symmetry breaking which scales with the lifting height of the strained deformation and therefore with the pseudo-magnetic field strength. Its magnitude is quantitatively reproduced by analytic and tight-binding models, revealing fields of 1000 T. These results might be the starting point for an effective THz valley filter, as a basic element of valleytronics.Comment: Revised manuscript: streamlined the abstract and introduction, added methods to supplement, Nano Letters, 201

    Niobium diselenide superconducting photodetectors

    Get PDF
    We report the photoresponse of niobium diselenide (NbSe2_2), a transition metal dichalcogenide (TMD) which exhibits superconducting properties down to a single layer. Devices are built by using micro-mechanically cleaved 2 to 10 layers and tested under current bias using nano-optical mapping in the 350mK-5K range, where they are found to be superconducting. The superconducting state can be broken by absorption of light, resulting in a voltage signal when the devices are current biased. The response found to be energy dependent making the devices useful for applications requiring energy resolution, such as bolometry, spectroscopy and infrared imaging.Comment: 6 pages, 6 figure

    Non-minimally Coupled Cosmological Models with the Higgs-like Potentials and Negative Cosmological Constant

    Full text link
    We study dynamics of non-minimally coupled scalar field cosmological models with Higgs-like potentials and a negative cosmological constant. In these models the inflationary stage of the Universe evolution changes into a quasi-cyclic stage of the Universe evolution with oscillation behaviour of the Hubble parameter from positive to negative values. Depending on the initial conditions the Hubble parameter can perform either one or several cycles before to become negative forever.Comment: 22 pages, 6 figures, v4:Section 2 expanded, references added, accepted for publication in Class. Quant. Gra
    corecore